
CS4530 Final Project: “Proximity Quick Chat”
Group 2O: Nik D’Mello, Bill Funcheon, Brendan King, Zach Wolfe

Live Site Link: cs4530-final-project-2o.netlify.app | Source Code: https://github.com/neu-cs4530-s22/team-project-group-2o

Our Feature: Proximity Quick Chat
 While exploring the world of Covey.Town, we were left with the
question: how can players interact with each other in a quick and easy
way, without relying on a full-fledged video call? Our feature addresses
this with proximity quick chat.
 Using our new message select menu, players can select from a list of
short predefined messages to broadcast to nearby players. Everyone can
see your message, but the farther away you get from the sender, the
more transparent the message becomes. And if you’re right next to the
sender, their message will render in a green box, signifying that they’re
talking directly to you.
 This way, players are still aware of the conversations happening
around them, but only the ones relevant to them are emphasized. All
messages are stored in our custom database.

Hover over the message-select box to send a
message, and click and drag it wherever you want.

A sample interaction
between three players.
Bravo starts far away
from Alpha, and
moves closer until
they are right next to
Alpha. Charlie moves
farther and farther
away from Alpha.

Technology Stack and Design
 To implement our feature, we use the existing socket-io system to communicate
between the backend and frontend parts of the codebase. ProximityChatMessage events
are sent to the backend from our MessageSelector React component, where they are
pushed to the database. Then, the backend emits a ProximityMessageReceived event,
which is picked up by our MessageDisplay React component. This way, database logic is
confined to the backend, and the socket event system ensures that any component
anywhere in the stack can access Message events, if necessary.
 The MessageSelector and MessageDisplay frontend components are custom elements
that rely on React hooks and socket events to keep their contents up-to-date. Their logic is
entirely separate from the Phaser.js elements, and acts as an overlay on top of the
WorldMap component.
 With our feature, when a town is created, it is connected to a separately hosted
MongoDB database using MongooseJS. Upon receiving a ProximityChatMessage event, in
addition to sending out a ProximityChatMessageReceived event to its listeners, it creates a
database entry for the respective proximity chat message containing the content of the
message, as well as metadata about the message.

Future Work
 Our feature currently only supports short, predefined, textual messages in order to
support a lightweight interaction system that doesn’t require typing. In the future, we may
want to merge this feature with the fully-formed text chat that already exists by adding
proximity features to textual messages, or we may want to replace predefined textual
messages with emojis/reactions entirely. In this way, we can hopefully solve the functionality
overlap between these two features.
 While our feature successfully stores message logs in a database for system
administrators, we have not provided a user interface where they can interact with these
records and moderate CoveyTown with them. To continue the development of this feature,
we would undertake the development of a robust, feature-rich system administration and
moderation UI to ensure CoveyTown is an appropriate and respectful environment for all.

Example Chat
Records stored in the
database.

https://cs4530-final-project-2o.netlify.app/
https://github.com/neu-cs4530-s22/team-project-group-2o

